Forum Replies Created

Viewing 15 posts - 1,306 through 1,320 (of 1,359 total)
  • Author
    Posts
  • Admin
    Keymaster
    Post count: 1622

    Solve the equation 6x4 – 11x3 – 26x2 + 22x + 24 = 0 given that the product of two of the roots is equal to the product of the other two roots.

    Roots are α, β, γ, δ  and let αβ = γδ

    α + β + γ + δ = 11/6

    αβ + aγ + aδ + βγ + βd + γδ = –13/3

    αβγ + αβδ + αγδ + βγδ = 11/3

    αβγδ = 4

    If αβ = γδ then

    αβ.αβ = 4
    (αβ)2 = 4

    αβ = ±2

    αβγ + αβδ + αγδ + βγδ = 11/3

    αβγ + αβδ + α.αβ + β.αβ = 11/3

    αβ(γ + δ + α + β) = 11/3

    We know that: α + β + γ + δ = 11/6

    αβ × 11/6 = 11/3

    αβ = –2    so we must discard the previous result of αβ = ±2 and just use αβ = –2 as it will satisfy both equations

    If αβ = –2, then γδ = –2

    αβ + αγ + αδ + βγ + βδ + γδ = –13/3

    –2 + αγ + αδ + βγ + βδ + –2 = –13/3

    αγ + αδ + βγ + βδ = –1/3

    α(γ + δ) + β(γ+ δ) = –1/3

    (α + β)(γ + δ) = = –1/3

    If α + β + γ + δ = 11/6  then γ + δ = 11/6 – (α + β)

    (α + β)[11/6 – (α + β)]= = –1/3

    Let α + β = m

    m(11/6 – m) = –1/3

    11/6m – m2 = –1/3m

    11m – 6m2 = –2

    6m2 – 11m – 2 = 0

    (6m + 1)(m – 2) = 0

    m = –1/6 or 2

    when m = –1/6              when m = 2

    α + β = –1/6                  α + β = 2

    As αα = –2

    α = –2

    2/β + β = –1/6             –2/β + β = 2

    –2 + β2 = –β/6              –2 + β2 = 2β

    –12 + 6β2 = –β             β2 – 2β – 2 = 0

    2 + β – 12 = 0          $$\beta  = \frac{{ – 2 \pm \sqrt {4 – 4 \times 1 \times  – 2} }}{2}$$     

    (3β – 4)(2β + 3) = 0    $$\beta  = \frac{{ – 2 \pm 2\sqrt 3 }}{2}$$  

    β = 4/3, –3/2, –1 ± √3

    Since β is a root, then the above solutions can represent any root

    Thus solution will be

    x = 4/3, –3/2, –1 ± √3

    Admin
    Keymaster
    Post count: 1622

    <p>Please help with Fitz Exercise 2.5 Q16 </p>

    Admin
    Keymaster
    Post count: 1622

    Solve $$\frac{{3x + 1}}{{x – 4}} \ge \frac{1}{3}$$.

    3(x – 4)(3x + 1) ≥ (x – 4)2
    0 ≥ (x – 4)2 – 3(x – 4)(3x + 1)
    0 ≥ (x – 4){(x – 4) – 3(3x + 1)}
    0 ≥ (x – 4)(x – 4 – 9x – 3)
    0 ≥ (x – 4)(–8x – 7)
    0 ≥ –(x – 4)(8x + 7)
    x ≤ –7/8, x > 4

     

    Admin
    Keymaster
    Post count: 1622

    <p>Math In Focus EX 3.10 Q 16</p>
    <p>thanks!</p>

    Admin
    Keymaster
    Post count: 1622

    If the roots of the equation x3 + px2 + qx + r = 0 are consecutive terms of a geometric series, prove that q3 = p3r.  Show that this condition is satisfied for the equation 8x3 – 100x2 + 250x – 125 = 0 and solve this equation.

    let the terms of the GP be $$\frac{a}{b},\,a,\,ab$$

    $$\alpha+\beta+\gamma=\frac{a}{b}+a+ab=-p$$

    $$a(\frac{1}{b}+1+b)=-p$$

    $$\frac{-p}{a}=(\frac{1}{b}+1+b)$$

    $$\alpha\beta+\alpha\gamma+\beta\gamma=\frac{a}{b}.a+\frac{a}{b}.ab+a.ab=q$$

    $$\frac{a^2}{b}+a^2+a^2b=q$$

    $$a^2(\frac{1}{b}+1+b)=q$$

    $$\frac{q}{a^2}=(\frac{1}{b}+1+b)$$

    $$\alpha\beta\gamma=\frac{a}{b}.a.ab=r$$

    $$a^3=r$$

    $$\frac{q}{a^2}=\frac{-p}{a}$$

    $$\frac{-q}{p}=a^3$$ 

    and $$a^3=r$$

    so $$\frac{-q}{p}=r$$

    $$q^3=p^3r$$

    $$x^3-\frac{100}{8}x^2+\frac{250}{8}x-\frac{125}{8}=0$$

    $$x^3-\frac{25}{2}x^2+\frac{125}{4}x-\frac{125}{8}=0$$

    $$p=-\frac{25}{2},\,q=\frac{125}{4},\,r-\frac{125}{8}$$

    $$q^3=(\frac{125}{4})^3$$

    $$=\frac{1953215}{64}$$

    $$p^3r=(\frac{-25}{2})^3\times\frac{-125}{8}$$

    $$=\frac{1953215}{64}$$

    ∴ q3 = p3r is satisfied for this equation

    hence

    $$a^3=-\frac{-125}{8}$$

    $$a=\frac{5}{2}$$

    $$a(\frac{1}{b}+1+b)=-p$$

    $$\frac{5}{2}(\frac{1}{b}+1+b)=\frac{100}{8}$$

    $$\frac{1+b+b^2}{b}=5$$

    1 + b + b2 = 5b

    b2 – 4b + 1 = 0

    $$b=\frac{4\pm\sqrt{16-4(1)(1)}}2$$

    $$b=\frac{4\pm\sqrt{12}}2$$

    $$b=\frac{4\pm2\sqrt{3}}2$$

    b = 2 ± √3

    hence roots 

    $$x=\frac{5}{2},\,\frac{5}{2}(2\pm\sqrt{3})$$

    Admin
    Keymaster
    Post count: 1622

    could i please get help with 
    Fitzpatrick Exercise 2.5 Q10

    thanks!

    Admin
    Keymaster
    Post count: 1622

    Simplify $$\frac{3}{{\sqrt 5  + 2}} – \frac{{\sqrt 2 }}{{2\sqrt 2  – 1}}$$ writing your answer with a rational denominator.

    $$=\frac{3}{{\sqrt 5  + 2}} \times \frac{{\sqrt 5  – 2}}{{\sqrt 5  – 2}} – \frac{{\sqrt 2 }}{{2\sqrt 2  – 1}} \times \frac{{2\sqrt 2  + 1}}{{2\sqrt 2  + 1}}$$

    $$ = \frac{{3\sqrt 5  – 6}}{{5 – 4}} – \frac{{4 + \sqrt 2 }}{{8 – 1}}$$

    $$ = 3\sqrt 5  – 6 – \frac{{4 + \sqrt 2 }}{7}$$

    $$ = \frac{{21\sqrt 5  – 42 – 4 – \sqrt 2 }}{7}$$

    $$ = \frac{{21\sqrt 5  – 46 – \sqrt 2 }}{7}$$

     

    Admin
    Keymaster
    Post count: 1622

    <p>MG Test Yourself 2 Q20</p>

    Admin
    Keymaster
    Post count: 1622

    If α and β are the roots of the equation x2 + mn + n = 0, find the roots of nx2 + (2n – m2)x + n = 0 in terms of α and β.

    $$\alpha+\beta=\frac{-m}{1}$$     $$\alpha\beta=\frac{n}{1}$$

    $$\alpha+\beta=-m$$     $$\alpha\beta=n$$

    let p and q be the roots of nx2 + (2n – m2)x + n = 0
    $$p+q=\frac{-(2n-m^2)}{n}$$         $$pq=\frac{n}{n}$$

    $$p+q=\frac{(m^2-2n)}{n}$$         $$pq=1$$

    $$p=\frac{1}{q}$$

    $$q+\frac{1}{q}=\frac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}$$

    $$q+\frac{1}{q}=\frac{\alpha^2+2\alpha\beta+\beta^2-2\alpha\beta}{\alpha\beta}$$

    $$q+\frac{1}{q}=\frac{\alpha^2+\beta^2}{\alpha\beta}$$

    $$q+\frac{1}{q}=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$$

    hence $$q=\frac{\alpha}{\beta}$$ and $$\frac{1}{q}=\frac{\beta}{\alpha}$$ 

    and $$p=\frac{\beta}{\alpha}$$

    Admin
    Keymaster
    Post count: 1622
    in reply to: Factor Theorem #11952

    Let P(x) = (x – 1)(x + 3)Q(x) + ax + b where Q(x) is a polynomial and a and b are real numbers. The polynomial P(x) has a factor of (x + 3). When P(x) is divided by (x – 1) the remainder is 8. Find the values of a and b.

    P(-3) = 0   P(1) = 8

    (-3 – 1)(-3 + 3)Q(3) – 3a + b = 0

    -3a + b = 0

    (1 – 1)(1 + 3)Q(1) + a + b = 8

    a + b = 8
    -3a + b = 0

    a – -3a = 8

    4a = 8

    a = 2

    2 + b = 8

    b = 6

    ∴ a = 2, b = 6

    Admin
    Keymaster
    Post count: 1622
    in reply to: Factor Theorem #11951

    <p>Fitzpatrick Exercise 2.3, Q12a </p>

    Admin
    Keymaster
    Post count: 1622
    in reply to: Remainder Theorem #11942

    When 3x3 – ax2 – bx + 1 is divided by (x – 2) the remainder is 5, when divided by (x – 1) there is no remainder. Find a and b.

    P(2) = 5   and P(1) = 0

    3(2)3 – a(2)2 – 2b + 1 = 5         3(1)3 – a(1)2 – b + 1 = 0

    24 – 4a – 2b + 1 = 5                     (3 – a – b + 1 = 2) × 2

    6 – 2a – 2b + 2 = 0

    18 – 2a – 1 = 5

    -2a = -12

    a = 6

    3 – 6 – b + 1 = 0

    -b – 2 = 0

    b = -2

    ∴ a = 6, b = -2

    Admin
    Keymaster
    Post count: 1622
    in reply to: Volume #11936

    The area bounded by the curve y = x2 and the line y = x + 2 rotated about the x-axis. Find the exact volume of the solid formed.

    Find where they intersect

    x2 = x + 2
    x2 – x – 2 = 0

    (x +1)(x – 2) = 0

    x = -1, x = 2

    the line will be above the curve so the integral will be the line – the parabola

    find x2 for each expression 

    y = x + 2 ⇒ y2 = (x + 2)2
    y2 = x2 + 2x + 4

    y = x2 ⇒ y2 = x4

    $$V = \pi \int_{ – 1}^2 {{x^2} + 4x + 4 – {x^4}\,dx} $$

    $$ = \pi \left[ {\frac{{{x^3}}}{3} + 2{x^2} + 4x – \frac{{{x^5}}}{5}} \right]_{ – 1}^2$$

    $$ = \pi \left\{ {\left( {\frac{8}{3} + 8 + 8 – \frac{{32}}{5}} \right) – \left( {\frac{{ – 1}}{3} + 2 – 4 + \frac{1}{5}} \right)} \right\}$$

    $$ = \frac{{72\pi }}{5}u^3$$

    Admin
    Keymaster
    Post count: 1622

    Complete the square on $$y^2-\frac{5y}{2}$$.
    Look at the coefficient of y : $$\frac52$$

    halve it: $$\frac52\times\frac12=\frac54$$

    square the result $${\left( {\frac{5}{4}} \right)^2}=\frac{25}{16}$$

    $$y^2-\frac{5y}{2}+\frac{25}{16}={\left( {y – \frac{5}{4}} \right)^2}$$

     

    Admin
    Keymaster
    Post count: 1622

    Solve for x, $$\frac{4}{|x-1|}>2$$.

    we don’t need to worry about the squaring as absolutes are always positive, so solve as a normal absolute inequality

    it is easiest to rewrite by multiplying both sides by |x – 1|

    4 > 2|x – 1|

    2|x – 1| < 4

    2(x – 1)  < 4                        2(x – 1) > -4

    x – 1 < 2                                x – 1 > -2

    x < 3                                      x > -1

    since we have the asymptote of x = 1 in between the 1 and 3 we have to consider that in our inequality, so instead of -1 < x < 3

    -1 < x < 3, x ≠ 1   or    -1 < x < 1,  1 < x < 3

Viewing 15 posts - 1,306 through 1,320 (of 1,359 total)