Admin2019-04-27T10:16:33+10:00

Forum Replies Created

Viewing 15 posts - 1 through 15 (of 1,359 total)
  • Author
    Posts
  • Admin
    Keymaster
    Post count: 1622
    in reply to: Projectile Motion #19104

    At what angle should a particle be projected with a velocity of 50 m/s to pass through a point on its path whose coordinates are (200, 25), distances being measured in metres?

    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}$$(t) = (50cos α) + (50sin α – 10t)
    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{r}$$(t) = (50t cos α) +(50tsin α – 5t2)
    passes through (200, 25)
    x = 200, y = 25
    50t cos α = 200
    t = $$\frac{4}{{\cos \alpha }}$$
    $$25 = 50 \times \frac{4}{{\cos \alpha }}\sin \alpha – 5 \times \frac{{16}}{{{{\cos }^2}\alpha }}$$
    25 = 200tan α – 80(1 + tan2 α)
    25 = 200 tan α – 80 – 80tan2 α
    80tan2 α – 200tan α + 105 = 0
    16tan2 α – 40tan α + 21 = 0
    (4tan α – 3)(4 tan α – 7) = 0
    tan α = 3/4, tan α = 7/4
    a = 36°52′, 60°15′

    Admin
    Keymaster
    Post count: 1622
    in reply to: Volume #19101

    The diagram shows two curves C1 and C2. The curve C1 is the semi-circle x2 + y2 = 4 for –2 ≤ x ≤ 0. The curve C2 is the ellipse  for 0 ≤ x ≤ 3. An egg is modelled by rotating the curves about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution.

    Admin
    Keymaster
    Post count: 1622

    Consider the function y = x cos–1 x.

    a. Find $$\frac{{dy}}{{dx}}$$.

    $$\frac{{dy}}{{dx}} = {\cos ^{ – 1}}x\, \times \,1 + x \times – \frac{1}{{\sqrt {1 – {x^2}} }}$$

    $$ = {\cos ^{ – 1}}x – \frac{x}{{\sqrt {1 – {x^2}} }}$$

    b. Hence, or otherwise, evaluate $$\int\limits_0^{\frac{{\sqrt 3 }}{2}} {{{\cos }^{ – 1}}x\,dx} $$.

    $$\int\limits_0^{\frac{{\sqrt 3 }}{2}} {{{\cos }^{ – 1}}x\,dx} = \int\limits_0^{\frac{{\sqrt 3 }}{2}} {{{\cos }^{ – 1}}x\,dx} – \frac{x}{{\sqrt {1 – {x^2}} }}dx + \int\limits_0^{\frac{{\sqrt 3 }}{2}} {\frac{x}{{\sqrt {1 – {x^2}} }}dx} $$

    $$\left[ {x{{\cos }^{ – 1}}x} \right]_0^{\frac{{\sqrt 3 }}{2}} + \int\limits_0^{\frac{{\sqrt 3 }}{2}} {{{\cos }^{ – 1}}x\,dx} – \frac{x}{{\sqrt {1 – {x^2}} }}dx$$

    $$\left[ {x{{\cos }^{ – 1}}x} \right]_0^{\frac{{\sqrt 3 }}{2}} + \int\limits_{\frac{1}{4}}^1 {\frac{{ – 1}}{{2\sqrt u }}} du$$

    using substitution u = 2

    $$ = \left( {\frac{{\sqrt 3 }}{2} \times \frac{\pi }{6}} \right) – \left( 0 \right) – \frac{1}{2}\int\limits_1^{\frac{1}{4}} {{u^{ – \frac{1}{2}}}} du$$

    $$ = \frac{{\sqrt 3 \pi }}{{12}} + \frac{1}{2}\left[ {2\sqrt u } \right]_1^{\frac{1}{4}}$$

    $$ = \frac{{\sqrt 3 \pi }}{{12}} + \frac{1}{2}$$

    $$ = \frac{{\sqrt 3 \pi + 6}}{{12}}$$

     

     

     

     

    Admin
    Keymaster
    Post count: 1622

    Suppose f(x) = tan (cos–1 x) and g(x) = $$\frac{{\sqrt {1 – {x^2}} }}{x}$$ .
    The graph of y = g(x) is shown.

    a. Show that f ‘(x) = g′(x) .

    f′(x) = $$ – \frac{1}{{\sqrt {1 – {x^2}} }} \times {\sec ^2}({\cos ^{ – 1}}x)$$

    $$= – \frac{1}{{\sqrt {1 – {x^2}} }} \times \frac{1}{{{{\cos }^2}({{\cos }^{ – 1}}x)}}$$

    $$= – \frac{1}{{\sqrt {1 – {x^2}} }} \times \frac{1}{{{x^2}}}$$

    $$ = – \frac{1}{{x^2\sqrt {1 – {x^2}} }}$$

    g(x) = $${(1 – {x^2})^{\frac{1}{2}}} \times {x^{ – 1}}$$

    g′(x) = $$ = {x^{ – 1}} \times \frac{1}{2} \times – 2x{(1 – {x^2})^{ – \frac{1}{2}}} + \sqrt {1 – {x^2}} \times – {x^{ – 2}}$$

    $$ = \frac{{ – 1}}{{\sqrt {1 – {x^2}} }} – \frac{{\sqrt {1 – {x^2}} }}{{{x^2}}}$$

    $$ = \frac{{{x^2} – \sqrt {1 – {x^2}} \sqrt {1 – {x^2}} }}{{{x^2}\sqrt {1 – {x^2}} }}$$

    $$ = \frac{{{x^2} – (1 – {x^2})}}{{{x^2}\sqrt {1 – {x^2}} }}$$

    $$ = – \frac{1}{{x^2\sqrt {1 – {x^2}} }}$$

    f ′(x) = g′(x)

    b. Using part a, or otherwise, show that f (x) = g(x).

    if f ′(x) = g′(x) then f (x) = g(x) + 

    find c
    let x = 1
    f (1) = tan (cos–1 1)
    = tan 0
    = 0
    g(1) = 0
    hence 0 = g(1) + c
    0 = 0 + c
    c = 0
    ∴  f (x) = g(x)

     

    Admin
    Keymaster
    Post count: 1622

    In the expansion of (5x + 2)20, the coefficients of xr and xr + 1 are equal. What is the value of r?
    (2 + 5x)20
    Find the term with xr
    20Cr (2)20 – r(5x)r   coefficient = 20Cr (2)20 – r(5)r
    Find the term with xr+ 1
    20Cr + 1 (2)19 – r(5x)r+ 1   coefficient = 20Cr + 1 (2)19 – r(5)r + 1

    $$\frac{{20!}}{{r!(20 – r)!}} \times {2^{20 – r}}{5^r} = \frac{{20!}}{{(r + 1)!(19 – r)!}} \times {2^{19 – r}}{5^{r + 1}}$$

    divide both sides by 20! and 219 – r and 5r

    $$\frac{2}{{r(r – 1)(r – 2)…(20\, – r)(19 – r)(18 – r)…}} = \frac{5}{{(r + 1)(r)(r – 1)…(19 – r)(18 – r)…}}$$

    times both sides by r(r – 1)(r – 2)… and (20 – r)(19 – r)…

    $$\frac{2}{{20 – r}} = \frac{5}{{r + 1}}$$

    2r + 2 = 100 – 5r
    7r = 98
    r = 14

     

     

     

    Admin
    Keymaster
    Post count: 1622

    Using (1 + x)4(1 + x)9 = (1 + x)13, show that 9C4 + 4C19C3 + 4C29C2 + 4C39C1 = 13C4.

    Consider how to make x4 since on the RHS we are looking for 13C4 

    (1 + x)4 = 4C0 + 4C1x + 4C2x2 + 4C3x3 + 4C4x4  and
    (1 + x)9 = 9C0 + 9C1x + 9C2x2 + 9C3x3 + 9C4x4 + …  (don’t need to consider anything higher than x4 as we wont be able to multiply the two expressions to make a resulting x4 term with anything higher than x4)
    term with x4 on both sides:
    4C0 × 9C4x4 + 4C1x ×  9C3x34C2x2 × 4C2x2 +  4C3x3 ×  9C1x + 4C4x4 ×  9C0 = 13C4x4
    let x = 1
    9C4 + 4C19C3 + 4C29C2 + 4C39C1 = 13C4

    Admin
    Keymaster
    Post count: 1622

    If (1 – 2√2)6 = x + y√2, evaluate the value of x and y.

    = $${}^6{C_0} + {}^6{C_1}( – 2\sqrt 2 ) + {}^6{C_2}{( – 2\sqrt 2 )^2} + {}^6{C_3}{( – 2\sqrt 2 )^3} + {}^6{C_4}{( – 2\sqrt 2 )^4} + {}^6{C_5}{( – 2\sqrt 2 )^5} + {}^6{C_6}{( – 2\sqrt 2 )^6}$$

    = 1 – 12√2 + 120 – 320√2 +960 – 768√2 + 512
    = 1593 – 1100√2
    hence x = 1593 and y = –1100

     

     

    Admin
    Keymaster
    Post count: 1622

    For the expansion of (1 + 3x)(5 – 2x)p, find an expression for the coefficient of x2.

    (1 + 3x)(5 – 2x)p = $$(1 + 3x)\left\{ {{}^P{C_0}{5^p}{{( – 2x)}^0} + {}^P{C_1}{5^{p – 1}}{{( – 2x)}^1} + {}^P{C_2}{5^{p – 2}}{{( – 2x)}^2} + {}^P{C_3}{5^{p – 3}}{{( – 2x)}^3} + {}^P{C_4}{5^{p – 4}}{{( – 2x)}^0} + {}^P{C_0}{5^{p – 5}}{{( – 2x)}^5}} \right\}$$

    consider the pairings that would make x2: 1 × x2 and 3x × x

    $$1 \times {}^p{C_2}{5^{p – 2}}4{x^2} + 3x \times {}^p{C_1}{5^{p – 1}} – 2x$$

    = $$\left( {4{}^p{C_2}{5^{p – 2}} – 6{}^p{C_1}{5^{p – 1}}} \right){x^2}$$

    hence coefficient of x2 is $$\left( {4{}^p{C_2}{5^{p – 2}} – 6{}^p{C_1}{5^{p – 1}}} \right)$$

    Admin
    Keymaster
    Post count: 1622
    in reply to: Rates #19074

    Let a hemispherical bowl of radius 10 cm contain water to a depth of h cm. The volume of water in the bowl in terms
    of its depth h cm is given by V = 1/3πh2(30 – h) cm3.
    Water is poured into the bowl at a rate of 2 cm3s–1 .

    a. If the radius of the water surface is r cm, show that $$r = \sqrt {20h – {h^2}} $$.

    When the depth of water is 4 cm, find in terms of π:

    b. The rate of change of the water level.

    c. The rate of change of the radius of the water surface.

     

    Admin
    Keymaster
    Post count: 1622
    in reply to: Rates #19071

    A man standing 100 metres from the base of a high–rise building observes an external lift moving up the outside wall of the building at a constant rate of 6.5 metres per second.

    a. If θ radians is the angle of elevation of the lift from the observer, show that $$\frac{{d\theta }}{{dt}}$$ = $$\frac{{13{{\cos }^2}\theta }}{{200}}$$.

    b. Evaluate $$\frac{{d\theta }}{{dt}}$$ at the instant when the lift is 40 metres above the observers’ horizontal line of vision.

     

    Admin
    Keymaster
    Post count: 1622
    in reply to: Rates #19069

    A sculptor is rolling modelling clay on a board. The clay is in the shape of a cylinder and has a constant volume of 20$$\pi$$ cm3. As she rolls it into a thinner cylinder, the radius decreases at a constant rate of 2 cm per minute. Find the rate of increase of the height h of the cylinder with respect to time, at the moment when the radius is 4 cm.

    V = $$\pi$$r2h
    20p = πr2h
    20 = r2h
    h = 20r–2

    $$\frac{{dh}}{{dr}}$$ = -40r-3
    = $$\frac{{ – 40}}{{{r^3}}}$$

    $$\frac{{dr}}{{dt}}$$ = -2    $$\frac{{dh}}{{dt}}$$ = ???  when r = 4 cm 

    $$\frac{{ – 40}}{{{4^3}}} = \frac{{dh}}{{dt}} \times – 2$$

    $$\frac{{dh}}{{dt}} = \frac{{dh}}{{dr}} \times \frac{{dr}}{{dt}}$$

    $$\frac{{dh}}{{dt}} = \frac{{ – 40}}{{{4^3}}} \times – 2$$

    $$\frac{{dh}}{{dt}}$$ = 1.25 cm/s

    Admin
    Keymaster
    Post count: 1622

    A window in the chapel has been damaged by a storm and needs to be replaced. It is in the shape of a rectangle surmounted by a semi-circle as shown. Let the radius of the semi-circle be r metres and the height of the rectangle be h metres.

    a. Given that the perimeter of the window is to be 16π metres, show that h = 8 – r – ½πr.

    $$P = h + h + 2r + \frac{1}{2} \times 2\pi r$$

    16π = 2h + 2rr

    2h = 16π – 2r – πr

    h = 8π – r – ½πr

    b. Hence, show that the area A of the window is given by the formula $$A = 16\pi r – 2{r^2} – \frac{1}{2}\pi {r^2}$$. 

    $$A = 2r \times h + \frac{1}{2} \times \pi \times {r^2}$$

    $$A = 2r \times (8\pi – r – \frac{1}{2}\pi r) + \frac{1}{2}\pi {r^2}$$

    $$A =16\pi r – 2{r^2} – \pi {r^2} + \frac{1}{2}\pi {r^2}$$

    $$A = 16\pi r – 2{r^2} – \frac{1}{2}\pi {r^2}$$

    c. Find the exact radius of the semi-circle for which the area of the window is to be a maximum.

    $$A\prime = 16\pi – 4r – \pi r$$

    $$A\prime \prime = – 4 – \pi $$

    0 = 16π – r(4 + π)

    r(4 + π) = 16π

    $$r = \frac{{16\pi }}{{4 + \pi }}$$

    A′′ = –4 – π > 0 for all r

    then concave down,

    hence maximum when $$r = \frac{{16\pi }}{{4 + \pi }}$$

    d. Find the maximum area of this window correct to 1 decimal place.

    $$A = 16\pi \left( {\frac{{16\pi }}{{4 + \pi }}} \right) – 2{\left( {\frac{{16\pi }}{{4 + \pi }}} \right)^2} – \frac{1}{2}\pi {\left( {\frac{{16\pi }}{{4 + \pi }}} \right)^2}$$

    A = 176.8946…

    ∴ maximum area = 176.9 m2

    Admin
    Keymaster
    Post count: 1622
    in reply to: ad_fn_tr.pdf #19053

    Given the function g(x) = x3kx. Let A(–1, g(–1)) and B(1, g(1)) be two points on the graph of g.

    a. Show that A is (–1, –1 + k) and B is (1, 1 – k).

    b. Show that the distance AB is $$2\sqrt {{k^2} – 2k + 2} $$ , given that the distance formula is $$d = \sqrt {{{({x_1} – {x_2})}^2} + {{({y_1} – {y_2})}^2}} $$ .

    a. sub the points A and B into the equation
    when x = -1, y = g(-1)                  when x = 1, y = g(1)
    g(-1) = (-1)3 – k(-1)                       g(1) = (1)3 – k(1)
    = -1 + k                                             = 1 – k
    = y                                                     = y

    yk – 1                                      y = 1 – k                         
    hence A(-1, -1 + k)                      B(1, 1 – k)

    b. $$AB = \sqrt {{{( – 1 – 1)}^2} + {{\left( {(k – 1) – (1 – k)} \right)}^2}} $$

    $$ = \sqrt {{{( – 2)}^2} + {{(2k – 2)}^2}} $$

    $$ = \sqrt {4 + 4{k^2} – 8k + 4} $$

    $$ = \sqrt {4{k^2} – 8k + 8} $$

    $$ = \sqrt {4({k^2} – 2k + 2)} $$

    $$ = 2\sqrt {{k^2} – 2k + 2} $$

     

     

    Admin
    Keymaster
    Post count: 1622
    in reply to: Projectile Motion #19045

    A horizontal drainpipe 5 m above sea level empties stormwater into the sea. If the water comes out of the horizontal and reaches the sea 3 m out from the pipe, find the ininitial velocity of the water. Let g = 10 ms2.

    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} = – 10\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j}$$

    the angle will be 0, since it is a horizontal projection

    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}(t) = (v\cos 0) \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i}+(v\sin 0 – 10t)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j}$$

    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{v}(t) = (v) \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i}+(– 10t)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j}$$

    $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{r}(t) = (vt) \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{i}+(5–5t^2)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{j}$$

    set vertical component of displacement to 0
    0 = 5 – 5t2

    0 = 5(1 – t)(1 + t)

    t = 1, -1

    at t = 1, x = 3

    3 = v

    hence initial velocity is 3 ms-1

     

    Admin
    Keymaster
    Post count: 1622
    in reply to: Substitution #18965

    Under certain conditions, the power P, in watts per hour, generated by a windmill with winds blowing v kilometres per hour is given by:  P(v) = 0.015v3.

    How fast  must the wind blow in order to generate 120 watts of power in 1 hr?

    120 = 0.015v3 substitute P(v) = 120
    8000 = v3 solve the equation to find v (the speed)
    v = 3√8000 take the cube root of both sides
    v = 20  
Viewing 15 posts - 1 through 15 (of 1,359 total)
Go to Top