Timetable › Forums › Standard › Formulae & Equations › Indices
-
AuthorPosts
-
Index Laws
$${x^a} \times {x^b} = {x^{a + b}}$$
$${x^a} \div {x^b} = {x^{a – b}}$$
$$\frac{{{x^a}}}{{{x^b}}} = {x^{a – b}}$$
$${\left( {{x^a}} \right)^b} = {x^{a \times b}}$$
$$x^{-1}=\frac{1}{x}$$
$$x^{-2}=\frac{1}{x^2}$$
a negative index means a fraction
$$x^{\frac12}=\sqrt{x}$$
$$x^{\frac13}=\sqrt[3]{x}$$
a fractional index means a root
Simplify $$\frac{{7{a^2}b^4}}{{3{a^6}{b^7}}} \div {\left( {\frac{{3ab}}{{2{a^6}{b^4}}}} \right)^3}$$
$$\frac{7}{{3{a^4}{b^3}}} \div \frac{{27{a^3}{b^3}}}{{8{a^{18}}{b^{12}}}}$$
$$ = \frac{7}{{3{a^4}{b^3}}} \times \frac{{8{a^{18}}{b^{12}}}}{{27{a^3}{b^3}}}$$
$$ = \frac{7}{{3{a^4}{b^3}}} \times \frac{{8{a^{15}}{b^9}}}{{27}}$$
$$=\frac{{56{a^{11}}{b^6}}}{{81}}$$
Simplify $${\left( {\frac{{2{m^3}{n^2}}}{{3m{n^5}}}} \right)^3} \times \frac{{6{m^2}{n^4}}}{{4{m^3}{n^{10}}}}$$
$$ = \frac{{8{m^9}{n^6}}}{{27{m^3}{n^{15}}}} \times \frac{{6{m^2}{n^4}}}{{4{m^3}{n^{10}}}}$$
$$ = \frac{{4{m^{11}}{n^{10}}}}{{9{m^6}{n^{25}}}}$$
$$ = \frac{{4{m^5}}}{{9{n^{15}}}}$$
Simplify $${\left( {\frac{{2{m^3}{n^2}}}{{3m{n^5}}}} \right)^3} \times \frac{{6{m^2}{n^4}}}{{4{m^3}{n^{10}}}}$$
$$ = \frac{{8{m^9}{n^6}}}{{27{m^3}{n^{15}}}} \times \frac{{6{m^2}{n^4}}}{{4{m^3}{n^{10}}}}$$
$$ = \frac{{4{m^{11}}{n^{10}}}}{{9{m^6}{n^{25}}}}$$
$$ = \frac{{4{m^5}}}{{9{n^{15}}}}$$
Evaluate 49½ + 50– 2-1,showing all steps of your working. $$49^{\frac12}=\sqrt{49}$$
= 7
49 to the power of a half means the square root of 49 which is 7 $$5^0=1$$
anything to the power of zero is 1, so 5 to the power of zero is 1 $$2^{-1}-\frac12$$
2 to the power of negative 1 means 1 over 2 to the power of 1, which is the same as 1 over 2 $$49^{\frac12}+5^0-2^{-1}-\frac12$$
$$=\sqrt{49}+1-\frac12$$
=$$7\frac12$$
Simplify ##\frac{{6{x^{\frac{3}{2}}}{y^{\frac{1}{2}}} \times {x^{\frac{4}{5}y\frac{3}{5}}}}}{{2{{\left( {{x^{\frac{1}{2}}}y} \right)}^{\frac{1}{5}}} \times 3{x^{\frac{1}{2}}}{y^{\frac{1}{5}}}}}##
## = \frac{{6{x^{\frac{{23}}{{10}}}}{y^{\frac{{11}}{{10}}}}}}{{6{x^{\frac{1}{{10}}}}{y^{\frac{1}{5}}} \times {x^{\frac{1}{2}}}{y^{\frac{1}{5}}}}}##
## = \frac{{{x^{\frac{{23}}{{10}}}}{y^{\frac{{11}}{{10}}}}}}{{{x^{\frac{3}{5}}}{y^{\frac{2}{5}}}}}##
## = {x^{\frac{{17}}{{10}}}}{y^{\frac{7}{{10}}}}##
-
AuthorPosts
- You must be logged in to reply to this topic.


